Pathobiochemistry of tumorigenesis

Pathobiochemistry of malignant transformation

Doc. MUDr. Zdenek Kleibl , Ph.D. (zdekleje@lf1.cuni.cz) Inst. of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University Prague

Cancer intro:

Malignant cancer – the genetic disease

Normal tissue

malignant transformation

Affection of genomic DNA by various pathogenetic events

Cancer intro:

Malignant cancer – the genetic disease

Normal tissue

malignant transformation

WHICH GENES? WHICH PROCESSESS? WHICH CELLS?

A few introductory remarks:

- cells in multicellular organism
- known facts about malignant transformation
- cell renewal

Considered hierarchical building plan

Regulated by hierarchical chemical signalling

Regulated by hierarchical chemical signalling

Regulated by chemical signalling at the cellular level

Considering the intracellular conditions and local environment in a tissue cluster

Regulated by chemical signalling at the cellular level

Considering the intracellular conditions and local environment in tissue cluster

Cells (not the organism) autonomously regulate the absolute amount of entities in a tissue clusters

Interactions of local and distant factors

Represented by biochemical interactions

ATP production

A few introductory remarks:

- cells in multicellular organism
- known facts about malignant transformation
- cell renewal

Represented by biochemical interactions regulating

Physiologically - balanced state in tissues

Critical events for tissue homeostasis maintenance

Critical events for tissue homeostasis maintenance

Critical events for tissue homeostasis maintenance

Critical conditions:

- healthy (intact) DNA
- competent immunity system

Critical events for tissue homeostasis maintenance

Critical conditions:

- healthy (intact) DNA
- DNA repair mechanisms
- Cell cycle checkpoints
- competent immunity system Differentiation

Pathologically – deterioration of tissue homeostasis

Cancer:

Specific deterioration of tissue homeostasis

↑ Mitotic signaling pathways↑ Cell cycle regulation

↓ Apoptotic pathways

Cancer:

Specific deterioration of tissue homeostasis

Enabled by:

- Damaged DNA

DNA repair mechanismsCell cycle checkpoints

- Uncompetent immunity system 🗵 Differentiation

Malignant transformation:

Specific deterioration of tissue homeostasis

- Mitotic hyperstimulation Cell cycle upregulation Evasion of apoptosis Deterioration of DNA repair Impaired differentiation
- Growth of malignant tissue
- Insensitivity to local and systemic growth control
- Growth across the tissue architecture
- Immortalization
- Toleration of genetic alterations
- Clonal variability
- Immature phenotype
- Metastatic potential
- Escape from immune surveillance

A few introductory remarks:

- cells in multicellular organism
- known facts about malignant transformation
- cell renewal

Majority of tissues have self renewal capacity

provided by gradual maturation from tissue stem/progenitor cells

Majority of tissues have self renewal capacity

provided by gradual maturation from tissue stem/progenitor cells

Stimulated by many (?), mainly local, factors

Majority of tissues have self renewal capacity

provided by gradual maturation from tissue stem/progenitor cells

Majority of tissues have self renewal capacity

provided by gradual maturation from tissue stem/progenitor cells

Majority of tissues have self renewal capacity

provided by gradual maturation from tissue stem/progenitor cells

Origin of cancer cells:

Genetic abberations in stem /progenitor cells

provide propagation of cancer-prone mutations to downstream cells

Part 2: Signaling pathways failure in oncogenesis

Examples of:

- mitotic hyperstimulation
- defects of DNA repair mechanisms
- evasion of apoptosis

Signals of cascades pathways for mitotic stimulation

Signals of cascades pathways for mitotic stimulation

Signaling of receptor tyrosine kinases

Proliferation Apoptosis

Defects of receptor tyrosine kinases signaling

Ras - directed therapy

Defects of receptor tyrosine kinases signaling

Mutation in *B-raf*
 oncogene: melanoma
 (~70%), papillary
 thyroideal cancer (~50%)
 and colorectal (~40%)
 cancers.

 Specific therapy: antisense oligos and specific inhibitors of kinase activity

PI3K signaling

Defects of PI3K signaling

Cytokine signaling canonnical pathway

Defects of cytokine signaling

Results of aberrant signaling pathways?

- Autonomous hyperstimulation of cellular growth potential
- Immaturity
- Enhanced migration potential

Cell cycle (CC): aims

Cell cycle – the sequence of consecutive biochemical

events leading to cell replication

The aims of CC:

- Highly precise copying and even distribution of genetic material between the new daughter cells
- Creation of two identical daughter cells from mother cell
- Cell differentiation in some cases

Cell cycle: overview

Cell cycle: overview

Regulation of cell cycle entry

Regulation of cell cycle entry

Perturbances of proper cell cycle entry

Core DNA repair pathways (DSBR)

Deterioration of DNA repair pathways (DSBR)

Apoptosis pathways: overview

Apoptosis pathways: players

Apoptosis pathways: defects

p53 – the most frequently mutated TSG

TP53 stably expressed under physiological conditions

Low IC concentration of p53 maintained by its targeting for ubiquitin mediated proteasomal degradation my mdm2 E3 activity

p53 – the most frequently mutated TSG

p53 – transcriptional regulation of CC & apoptosis

following DNA damage

Malignant cancer – the genetic disease

Normal tissue

malignant transformation

WHICH GENES? WHICH PROCESSES? WHICH CELLS?

Malignant cancer – the genetic disease

Normal tissue

- Up-regulation of oncogenes (genes promoting cell cycle or inhibiting apoptosis)
- Downregulation / silencing of tumor supressor genes (genes halting cell cycle or facilitating apoptosis)
- Inactivation of genes coding for DNA repair proteins maintaining DNA integrity

Malignant cancer – the genetic disease

Normal tis su WHICH MUTATIONS?

- Up-regulation of oncogenes (genes promoting cell cycle or inhibiting apoptosis)
- Downregulation / silencing of tumor supressor genes (genes halting cell cycle or facilitating apoptosis)
- Inactivation of genes coding for DNA repair proteins maintaining DNA integrity

WHICH GENES? WHICH PROCESSES? WHICH CELLS?

Malignant cancer – the genetic disease

Normal tis suWHICH MUTATIONS?

Drivers

- mutations "driving" malignant transformations

Passengers

- mutations that arise from disordered DNA repair processes that are NOT involved in tumorigenesis

WHICH GENES?

WHICH PROCESSES?

WHICH CELLS?

Malignant cancer – the genetic disease

Normal tissue

- Activation of cell cycle (including the promitotic pathways)
- Evasion of apoptosis
- Impairment of DNA repair mechanisms
- Decreased maturation and senescence

Malignant cancer – the genetic disease

Normal tissue

Stem / progenitor cells rather than matured cells in tissues

Cancer pathways:

Why we should know them?

Classification of tumors

- Identification of cancer genes and "driving" mutations
- Improved, optimized treatment
 - Targeting of tumor cells not somatic cells
 - Individualization of therapy based on molecular cancer profile