Lysosomes and lysosomal disorders

Eukaryotic cell

Lysosomes

Lysosomes

Lysosomes

Lysosomes are the principal sites of intracellular degradation of macromolecules

about 40 types of acid hydrolases -

proteases, nucleases, glycosidases, lipases, phospholipases, phosphatases, and sulfatases.

acidic pH optimum – protection of cytosol (neutral pH)

<u>acidic environment</u> – (pH 4.5 -5) – maintained by vacuolar H⁺ ATPase

H+ gradient drives transport of small molecules across the membrane

<u>lysosomal membrane proteins are **highly glycosylated** – protection from proteolytic attack provide interface for various lysosomal functions</u>

Maturation of lysosomes

Lysosomes and vacuolar transport

"Unusual" lysosomes

Secretory lysosomes /Lysosomerelated organelles

In some cells (often of haematopoietic origin) there are organelles that have properties of <u>both</u> <u>lysosomes and secretory granules</u>

- acidic pH
- lysosomal membrane and lumenal proteins
- exocytosis in response to a stimulus

Lysosome-related organelles (LRO)

- -lytic granules (NK cells and cytotoxic Tlymphocytes)
- -azurophilic granules
- -melanosomes
- -"external" lysosomes of osteoclasts
- delta-granules in platelets

Lysosome-related organelles - osteoclast

Transport of proteins and material for degradation to lysosomes

Multiple pathways deliver material to lysosomes

Autophagy is a process of self-degradation of cellular components

Double-membrane <u>autophagosomes</u> sequester organelles or portions of cytosol and fuse with lysosomes

Autophagy is upregulated in response to signals such as:

- starvation
- growth factor deprivation
- ER stress
- pathogen infection.

Macroautophagy

Microautophagy

Chaperone-mediated autophagy

proteins containing specific signal sequence translocation of proteins driven by binding of chaperones internalization via lamp2a receptor in the lysosomal membrane

Lysosomal membrane protein LAMP2 is a receptor involved in fusion of autophagic vacuoles with lysosomes

Import of lysosomal proteins into lysosome

Soluble lysosomal proteins : – mannose-6 phosphate receptor

Lysosomal membrane proteins:

- signals in short C-terminal "tail")
- signals are recognised by adaptor proteins (AP3..)

Other

- glucocerebrosidase, lysosomal acid phosphatase
- prosaposin
- sortilin, LIMPII

Transport of soluble lysosomal proteins by mannose-6-phosphate receptors

Sorting of proteins containing MP6 signal

The majority of soluble (luminal) lysosomal proteins is transported into lysosome via mannose-6-phosphate receptor

M6P signal is built on N-linked oligosaccharides of hydrolases by Glc Nac phosphotransferase in cis-Golgi

N-acetylglucosamine phosphotransferase (GlcNac phosphotransferase) recognises a 3-D pattern on lysosomal enzymes

Protective GlcNac group is enzymatically removed in trans-Golgi, leaving M6P exposed

MP6 receptors capture lysosomal enzymes by receptormediated endocytosis at plasma membrane

Lysosomal membrane proteins

Lysosomal membrane contains more than 100 proteins, majority of which have unknown function. Proteins with known function include receptors, molecules participating in vesicular transport, transporters of small molecules, vacuolar ATPase etc.

Oligosaccharide chains at the inner face of lysosomal mebrane for a glycocalix protecting the membrane from the attack of hydrolases

LAMP 2 (lysosomal associated membrane protein 2) is a receptor for autophagic vacuoles

Activators of lysosomal hydrolases

Activators of lysosomal hydrolases

Saposins A,B,C,D

deficits of saposins lead to variant forms of disorders caused by deficiencies of enzymes they activate

General features of lysosomal disorders

Lysosomal ("storage") diseases

Deficiencies of proteins from the lysosomal system lead to storage of material in lysosomes

Lysosomal ("storage") diseases

<u>**Disorders of transport**</u> of enzymes into lysosome or disorders of substrate transport (e.g. due to a disruption of vesicular transport inside the cell) can also lead to lysosomal storage

LSD: Common phenotypical features and affected organs

Central nervous system: neurodegeneration, ... Spleen, liver : hepato and splenomegaly, hepatopathy ... Skeleton: Facial dysmorphy, dysostosis multiplex, ... Peripheral nervous system: peripheral neuropathy, ... **Heart** – cardiomyopathy, valve disease, ... Kidney : renal failure, nefrolithiasis ... Skin : agiokeratomas, ... Eye: cataracts, corneal clouding, cherryred spot, retinal degeneration, ... Ear: Sensorineural deafness, ... Bone marrow: anemia Lungs:

Lysosomal disorders

Hereditary disorders associated with storage of material within the lysosomes

- Disorders of glycan degradation mucopolysaccharidoses and glycoproteinoses
 Lipidoses
- 3. Proteinoses
- 4. Disorders of lysosomal transport of metabolites
- 5. Disorders of transport of proteins into lysosomes

Alteration of metabolic, signalling, and transport pathways in lysosomal disorders

- Accumulation of secondary metabolites
- Alterations of calcium homeostasis
- Free radicals and oxidative stress
- Neuroinflammation
- Abnormal autofagy

Alteration of metabolic, signalling, and transport pathways in lysosomal disorders

<u>Neuroinflammation</u>

- Signs of neuroinflammation is present essentially in all lysosomal disorders with CNS involvement
- Activation of immune system <u>microglia</u> and <u>astrocytes</u>
- Similar findings are present in "classic" neurodegenerative disordrders
- <u>Chronic glial activation</u> in lysosomal disorders apparently contributes to neuronal damage

Overview of lysosomal disorders

30 enzymes – hereditary deficiencies of which cause human diseases

lipids – lipidoses, including sphingolipidoses

 $gly kosaminogly cans-{\tt mucopolysaccharidoses}$

N-glycans, oligosacharides – glycoproteinoses

glycogen – glycogenosis type II (Pompe)

proteins – proteinoses

Lipidoses – 9 types

- Gaucher disease glucocerebrosidase deficiency
- Fabryho disease alpha-galactosidase A deficiency
- Niemann-Pick disease type A/B acid sphingomyelinase deficiency
- **Niemann-Pick disease type C** deficit of proteins involved in intracellular transport of unesterified cholesterol
- Krabbe disease beta-galactosylceramidase deficiency
- **Metachromatic leukodystrophy** arylsulfatase A deficiency

Fabry disease – alpha-galactosidase

X-linked disease

lysosomal storage of glycolipids with terminal alpha-galactose, predominantly globotriaosylceramide

storage in vessel endothel, smooth muscle of the vessels, cardiomyocytes, glomerules and tubules and other cell types

Fabry disease – symptoms

hypertrophic cardiomyopathy, arythmias

chronic progressive renal disease leading to renal failure

TIA, parestesias

angiokeratomas, cornea verticilata

X-linked disease

In females the severity of phenotype depends on X-inactivation

Figure 3 Schematic illustration of the changes in PQ-interval depending on P-wave duration in Fabry disease (FD) compared with normal controls. Shortening of the PQ-interval was predominantly caused by a shorter P-wave duration in patients with FD. Dashed lines, arrows and red zone indicates changes in FD.

Females are mosaics

The size of X-inactivation patches differs between tissues

Skewing of X-inactivation may influence phenotype

Patch size may confound testing of clonality, enzyme activity etc. in tissues

Patch size may influence cross-correction of the defect by endocytosis of enzyme from cells expressing wild-type allele (in heterozygotes)

Oxford University Press

Marco Novelli et al. PNAS 2003;100:3311-3314 G6PD staining in the intestine in G6PD carriers

Example of arrythmia in Fabry disease : Atrial fibrillation with slow ventricular response and a heart rate of 56 bpm. Criteria for LVH with diffuse abnormal repolarization.

Gaucher disease

Lysosomal storage disorder

Deficiency of glucocerebrosidase (acid beta glucosidase)

Accumulation of glucosylceramide preferentially in cells of macrophage origin (Gaucher cells)

Multisystem disorder

Hepatomegaly, splenomegaly, bone disease, trombocytopenia, anemia, lung infiltration

In type 2 and 3 Gaucher disease: CNS disease

Clinical variability, chronic progresion Type 1: chronic non-neuronopathic Type 2: acute neuronopathic Type 3: chronic neuronopathic

Heterozygosity or homozygosity for a mutation in the glucocerebrosidase gene(GBA) is a susceptibility factor for Parkinsons disease (PD)

Molecular mechanism is not clear , ? tau protein or α -synuclein transport disorder ?

Strong epidemiologic evidence for the association, 5%-10% of PD patients carry GBA mutations, Odds-ratio 16-28

Mutant glucocerebrosidase is present in <u>Lewy bodies</u> in Gaucher patients with Parkinson disease

Association with GBA mutations also shown in dmentia with Lewy bodies

Niemann-Pick disease type C

- Disorder of intracellular lipid traficking
- Neurovisceral disorder : highly variable clinical picture
- Prolonged neonatal jaundice of cholestasis, hepatosplenomegaly or isolated splenomegaly
- Later **progresssive neurological disease** ataxia , clumsiness, falls, spasticity, seizures, dysarthia or dysphagia
- tyúical signs : vertical gaze palsy, gelastic cataplexy
- **psychiatric signs:** presenile cognitive decline, dementia, paranoia (hallucinations, ...)

Niemann-Pick type C disease

- Disorder of intracellular lipid trafficking, especially of cholesterol
- accumulation of unesterified cholesterol and glycolipids in late endosomes/lysosomes
- Disorder of LDL-derived cholesterolu
- abnormal fusion of late endosomes and lysosomes, abnormal filling of lysosomes with Ca⁺⁺

Mutations in two cholesterol-transporting proteins : NPC1 and NPC2

NPC1 is more frequent (about 95% of NPC)

• (Note: Niemann-Pick type A and B are caused by the deficiency of acid sphingomyelinase)

Vanier 2010

Intracellular transport of LDL cholesterol

Function of NPC1 and NPC2

- Soluble NPC2 binds LDL-derived cholesterol and transfers it to NPC1
 - NPC1 transfers cholesterol molecules across glycocalix at the lumenal face of the lysosome
 - Treatment in trials: propyl beta cyclodextrin intrathecally

Mucopolysaccharides

Polysaccharides

Heparan sulfate Dermatan sulfate Keratan sulfate Chondroitin sulfate

Families of proteoglycans expressed in cartilage: representative members

Glycosaminoglycans are degraded by sequential action of glycosidases

Mucopolysaccharidoses

11 disorders

Most common :

MPS I Hurler disease - deficiency of alpha-iduronidase, ARinheritance MPS II - Hunter disease - deficiency of iduronate sulfatase , X-

linked

Common symptoms

Progressive dementia, hepatosplenomegaly, coarse features (gargoylism), bone disease (dysostosis multiplex), corneal opacities, cardiac disease

Mukopolysacharidosis III, MPS III Sanfilippo disease

In the first years of life normal development At 2-6 years of age prominent hyperactivity, sleep disorders, slowly progressive dementia

Coarse facies, coarse hair drsné vlasy, small hepatosplenomegaly

Spasticity, dementia, death usually between 15 - 25 years of age

Glycoproteinoses: Hereditary deficits of enzymes degrading sugar moieties of glycoproteins Clinically similar to mucopolysaccharidoses

Fig. 140-4 Probable steps in degradation of complex oligosaccharide structure.

I-cell disease (mucolipidosis II)

Disorder of transport M6P-tagged lysosomal proteins due to mutations in GlcNAC phosphotransferase

<u>increased activities of lysosomal proteins in</u> <u>extracellular fluid</u>

<u>decreased activities of multiple lysosomal enzymes in</u> <u>lysosomes</u>

enlarged lysosomes

I-cell disease (Mucolipidosis II)

Deficiency of GLCNac-phosphotransferase Coarse facies, thickening of gums, small hepatomegally and splenomegally, dysostosis multiplex psychomotor delay, mental deficit elevated activities of lysosomal hydrolases in plasma, low activities in tissues Vacuolization of lymphocytes ("Inclusion cell") = storage lysosomes

Figure 1 A lymphocyte with many vacuole-like inclusions (original magnification, x900).

van der Meer, W et al. J Clin Pathol 2001;54:724-726

Figure 3 Electron microscopic image of lymphocytic vacuoles containing round osmiophilic structures (original magnification, x15 000).

van der Meer, W et al. J Clin Pathol 2001;54:724-726

Figure 2 a: X-ray of hand showing shortening of tubular bones and proximal tapering of 2nd to 5th metacarpals

Figure 2b: Lateral X-ray of the spine showing ovoid vertebral bodies and "hammer shaped" vertebrae. The ribs are widened and "oar shaped"

Dysostosis multiplex in I-Cell disease

Kumar et al, J Postgrad Med. 2005 Jul-Sep;51(3):232-3.

Danon disease – LAMP2 deficiency

Lamp 2 participates in fusion of lysosomes with autophagic vacuoles

ardiomyopathy - usually hypertrophic
rythmia - typically preexcitation syndrome - WPW

Intelectual disability in some patients

Other symptoms: myopathy sudden death

X-linked disease females have usually milder phenotype

Accumulation of autophagic vacuoles predominantly in cardiac and skeletal muscle

Danon disease

- Cardiomyopathy : hypertrophic, dilated, Wolf-Parkinson-White syndome
- Skeletal myopathy: proximal muscle weakness
- Intelectual disability

Earlier onset in males: typically after the first decade of life Females : diagnosis typically in third decade of life X-linked disorder

Treatment : no causal therapy, heart transplantation, defibrilators

Differential diagnosis : Pompe disease, vacuolar myopathies

Deficiencies of lysosomal permeases lead to lysosomal accumulation of small molecules

- Cystinosis : Cystinosin deficiency renal disease with Fanconi syndrome corneal crystals, photophobia, growth retardation hypothyroidism
- normal inteligence
- lysosomal acumulation of cystine
- Isolated ocular form
- mixed disulfide with cysteamine is transported by permease for lysine

El Naggari et al.Sultan Qaboos Univ Med J. 2014 May; 14(2): e245–e248.

Lysosomal transporters deficiencies

Cystinosis – cystinosin deficiency renal disease with Fanconi syndrome renal failure – renal transplantation corneal crystals , photophobia growth retardation hypothyroidism normal inteligence

ocular form

<u>Sialuria – sialin deficiency</u>

cystine

cysteamine

Cystinosis

cysteamin

Cystinosis

В

Figure 4. Renal Function in Patients with Cystinosis Treated with Cysteamine and in Untreated Patients, According to Age.

Disorders of lysosome-related organelle biogenesis and function

- A group of hereditary disorders often associated with
- albinism (melanosome dysfunction)
- visual impairment
- bleeding tendency(platelet dysfunction)
- inflammatory bowel disease
- lung fibrosis
- immunodeficiency
- "huge lysosomes" in tissues

Heřmanský-Pudlák,Griscelli, Chediak-Higashi syndromes

elli, omes

Diagnostics and treatment of lysosomal disorders

Supplementation of deficient protein

Bone marrow transplantation_

Enzyme replacement therapy

Reduction of stored substrate

substrate inhibition therapy

Bone marrow transplantation

Haematopoietic stem cell transfer

Pro: In contrast to enzyme replacement therapy can influence CNS disease

Con: High morbidity and mortality

Lysosomal disorders

Mucopolysacharidosis I Modifies natural course of the disease Early treatment can prevent neurological disease Residual disease Other MPS disorders MPS III – no improvement of neurological progression Other lysosomal disorders

http://www.bmtinfonet.org/bmt/bmt. book/chapter.1.html#p13

Peroxisomal disorders

X-ALD

Enzyme supplementation therapy

<u>Supplementation of deficient enzyme in regular</u> <u>infusions</u>

Gaucher disease (glucocerebrosidase) Fabry disease (alpha galactosidase A) Pompe disease (acid alpha glucosidase) MPS I (alpha iduronidase) MPS II (alpha iduronate sulfatase) MPS VI, Maroteaux-Lamy (arylsulfatase B) Niemann-Picko disease B (acid sphingomyelinase) MPS IVA, Morquio A, ...

Production of recombinant enzymes Genzyme, TKT, Biomarin, Shire, Inotech, ...

Enzyme supplementation therapy in Gaucher disease

Receptor-mediated endocytosis

Macrophage targeted glucocerebrosidase - treatment with exoglycosidases

Mannose receptor (macrophages, endothelia, liver)

Regular infusions

Originally glucocerebrosidase isolated from human placentas (Ceredase, Genzyme)

Recombinant enzyme

Cerezyme (Genzyme) – Cho cells

Does not cross haematoencephalic barrier

High costs

Enzyme supplementation therapy

<u>Supplementation of deficient enzyme in regular</u> <u>infusions</u>

Gaucher disease (glucocerebrosidase) Fabry disease (alpha galactosidase A) Pompe disease (acid alpha glucosidase) MPS I (alpha iduronidase) MPS II (alpha iduronate sulfatase) MPS VI, Maroteaux-Lamy (arylsulfatase B) Niemann-Pick disease B (acid sphingomyelinase) MPS IVA, Morquio A, ...

Production of recombinant enzymes Genzyme, TKT, Biomarin, Shire, Inotech, ...

b) Inhibition of enzymes in the metabolic pathway proximal to the metabolic block

"Substrate inhibition (reduction) therapy"

Substrate inhibition therapy

- Mutant enzymes have residual activities
- N-butyldeoxyjirinomycin (Zavesca)
- Inhibitor of glucosylceramide synthase
- Gaucher disease, GM1 gangliosidosis

Measurement of metabolites

Enzyme activity measurement

Mutation analysis

Morphological diagnostics

